Hornsby Girls' High School Trial Examination 1999 Mathematics 2 Unit

Time Allowed 3 Hours (Plus 5 Mins Reading Time)

Directions to Candidates

- Attempt all Questions
- · All questions are of equal value
- All necessary working should be shown. Marks may be deducted for careless or badly arranged work
- Standard Integrals are printed on the last page
- Approved calcula ors may be used
- Each question must be started on a new page

ŲŲ	Siloni. Start a new page	Marks	
(a)	Factorise: $16x^2 - 9$	1	
(b)	Convert $\frac{3\pi}{5}$ radians to degrees	1	
(c)	Find a primitive of: $3 - 2x^2$	2	
(d)	When the Goods and Services Tax (GST) is introduced, some items will be exempt while others will incur a tax of 10%. The local supermarket is advertising a service,	2	
	"Find out what you will pay under a GST".		
	Meg takes her trolley to Johnny, the checkout operator, and he tells her that her bill is \$285. If the GST is imposed it will rise to \$296.40. What percentage of Meg's bill is GST exempt?		
(e)	Given $f(x) = 1 - x^3$, find the value of a if $f(a) = 65$.	2	
(f)	Find the values of a and b if $\frac{1}{2\sqrt{3}-1} = a + b\sqrt{3}$	2	

If $\frac{a}{b} = \frac{4}{3}$ and a + b = 28, find the values of a and b.

4

- (a) Differentiate:
 - (i) $(x^2+5)^{-3}$
 - (ii) $x^2 \tan x$
 - (iii) $\frac{\log_e x}{x}$

(b) Find
$$\int \frac{x^2}{x^3-2} dx$$

(c) Evaluate:

(i)
$$\int_0^{T_4} \cos 2x \, dx$$

(ii)
$$\int_0^{\ln 3} e^x dx$$

(d) Points A(1, 2), B(4, 7) and C(3, 8) form a triangle.

Draw the triangle in your Writing Booklet.

- (i) Calculate the length of AB as a surd.
- (ii) Determine the equation of AB in general form.
- (iii) Find the perpendicular distance of the point C from the line AB as a surd.
- (iv) Hence, or otherwise, find the area of triangle ABC.

2

2

Mark

(a) If α and β are the roots of $5x^2 - 2x - 3 = 0$, find the value of:

3

- (i) $\alpha + \beta$.
- (ii) $\frac{1}{\alpha} + \frac{1}{\beta}$.
- (b)

6

In the diagram, OA is the line y = 2x, and AB is the line 4x + 3y - 40 = 0.

Copy or trace the diagram and answer the following.

- (i) Find the coordinates of A.
- (ii) Calculate the angle of inclination of the line AB to the nearest degree.
- (iii) Write down the three inequalities satisfied by the points that lie inside ΔOAB .
- (c)

3

NOT TO SCALE

NOT TO SCALE

The diagram shows a sector *OACB* with sector angle 50° and radius 10 centimetres.

- (i) Convert 50° to radian measure.
- (ii) Calculate, correct to one decimal place, the area of segment ABC.

QUESTION 4.

Marks

(a) Simplify $\frac{\log x^3 - \log x}{\log x^2 + \log x}$

2

5

(b)

ABCDEFGH represents a calcite crystal with six equal rhombic faces. In each rhombic face, the longer diagonal is $8\sqrt{3}$ cm, and the sides are 8 centimetres long.

- (i) Find the size of the angle ABC in the rhombic face ABCD.
- (ii) Calculate the surface area of the crystal.
- (c) Consider the function $y = 1 + \sin 2x$.

- (i) State the period and the range of the function.
- (ii) Sketch the graph of $y = 1 + \sin 2x$ for $0 \le x \le 2\pi$.
- (iii) Write down the number of solutions to the equation $\sin 2x = -1$ for $0 \le x \le 2\pi$. (Do not solve the equation.)

(a) Find the exact value of $\sec \frac{\pi}{4} + \cot \frac{\pi}{6}$.

2

4

- (b) Four metal disks, numbered 1, 2, 3 and 4 are placed in a bag. Two disks are selected at random and placed together on a tabletop to form a two-digit number.
 - (i) By using a tree digram, or otherwise, find how many two digit numbers which can be formed.
 - (ii) Find the probability that the number formed is 21.
 - (iii) Determine the probability that the number formed is divisible by 3.
- (c) Consider the arithmetic series $47 + 41 + 35 + \dots$

- (i) State the common difference.
- (ii) If T_n is the *n*th term of the series, find the smallest *n* for which $T_n < 0$.
- (iii) If S_n is the sum of n terms of the series, find the smallest n for which $S_n < 0$.

Marks

3

- (a) A bottle of vintage wine cost \$375 when first released. After t years its value, \$V, is given by $V = 375e^{0.05t}$.
 - (i) Find the value of the bottle of wine after 10 years, correct to the nearest dollar.
 - (ii) Find how many years it takes for the value of the wine to increase to \$1000 per bottle. Give the answer to the nearest one tenth of a year.
- (b) Consider the curve $y = e^{2x}(1-x)$.

- (i) Find the y-intercept.
- (ii) Determine where the curve crosses the x-axis.
- (iii) Find the one stationary point, and determine its nature.
- (iv) Discuss the behaviour of the curve as $x \to +\infty$.
- (v) Discuss the behaviour of the curve as $x \to -\infty$.
- (vi) Sketch the curve.

(a) A particle is moving in a straight line.

At time t seconds its velocity is v metres per second. The diagram shows the graph of v as a function of t.

8

4

- (i) At what times does the particle change direction?
- (ii) Over what period of time does the particle have positive acceleration?
- Use Simpson's rule with 3 function values to determine the distance travelled between t = 1 and t = 5.
- If the equation of the above velocity graph is $v = -3t^2 + 18t 15$, find the distance travelled in the first 6 seconds.

(b)

The diagram shows part of the graph of the function $y = \frac{1}{2x-3}$

The shaded region is bounded by the curve, the x-axis, and the lines x = 2 and x = 3. The region is rotated around the x-axis to form a solid.

Find the exact volume of the solid in its simplest form.

Marks

- (a) Two dice are thrown and the difference of the numbers showing is noted.
- 3
- (i) By using a table of outcomes, or otherwise, calculate the probability of getting a difference of four.
- (ii) If two pairs of dice are thrown what is the probability they both give a difference of four?
- (b) For the quadratic expression $mx^2 6x 1$.

3

- (i) find the discriminant
- (ii)
- show that there are no values of m for which the expression is positive definite.

(c)

In the graph, a tangent is drawn at P(2, 24) on the parabola $y = 20x - 4x^2$. The tangent intersects the x-axis at Q.

- (i) Show that the equation of the tangent is 4x y + 16 = 0.
- (ii) Find the coordinates of Q.
- (iii) Find the area of the shaded region POQ.

QUESTION 9.

Start a new page

(a) If the first three terms of a geometric series are $\frac{a+b}{a-b} + m + \frac{a-b}{a+b}$, find the possible values of m.

(b)

In the diagram ABCD is a square with diagonals AC and BD. The point E lies on DB, and the interval CE bisects $\angle ACB$.

(i) Prove that $\angle DCE = \angle DEC$.

Hence show DE = DA.

A grain silo has a cylindrical shaped wall and a cone shaped roof as in the diagram. Let the radius of the base of the silo be r metres, the height of the cylinder be and the height of the cone be 2x metres.

- Show that if the length of the slant side of the cone is 20 metres, then $r^2 = 20^2 4x^2$.
- Show that the colume, V, of the silo is given by $V = \frac{20}{3}\pi(100x x^3)$.
- find the exact height of the silo so that it holds the maximum amount of grain.

(a) If $9^{2n-7} = 27^{2n-5}$, find n.

Marks

2

 $\begin{pmatrix} \chi \\ (b) \end{pmatrix}$

A sum of \$2000 is invested into a retirement account and interest is compounded, at a rate of 8% per annum, every six months.

6

- (i) If no further deposit is made into the account, how much is in the account at the end of 20 years?
- (ii) Now suppose that at the beginning of the second year, and at the beginning of each subsequent year, a further \$500 is deposited into the account.

How much will be in the account at the end of 20 years?

(c) Consider the function $f(x) = \pi x - \cos \pi x$.

- (i) Find $f''\left(\frac{1}{2}\right)$.
- (ii) Show that the point $\left(\frac{1}{2}, \frac{\pi}{2}\right)$ is a point of inflexion on the graph of y = f(x).

2U Trial - HGHS

Question 1

a)
$$16x^{2}-9$$

$$= (4x-3)(4x+3)$$

b)
$$\frac{3\pi}{5} \times \frac{180}{\pi} = 108^{\circ}$$
 (

c)
$$\int 3 - 2x^2$$

$$= 3x - \frac{2x^3}{3} + C$$

$$\frac{d}{x+y} = 285$$

$$x+1-1y = 296-40)2$$

$$\frac{0R}{10/0} = $11-40$$
of toxed

e)
$$f(x) = 1 - x^3$$

 $f(a) = 1 - a^3 = 65$

$$-a^3 = 64$$
 $a^3 = 64$

$$\alpha = -4 \qquad (2)$$

(2)

$$2\sqrt{3}-1 \qquad 2\sqrt{3}+1 = 2\sqrt{3}+1$$

$$= \frac{2\sqrt{3}+1}{11} = \frac{1}{11} + \frac{2}{11}\sqrt{3}$$

$$\therefore \quad a = \frac{i}{II} \qquad b = \frac{z}{II} \qquad (2)$$

$$(a) \frac{a}{b} = \frac{4}{3}$$
 $(a+b) = 28(2)$

$$3 - 3 = 4b = 28$$
 $4 = 4b (1)$

$$\frac{4b}{3} + b = 28$$

$$4b + 3b = 84$$

$$7b = 84$$
(2)

(1) a) i)
$$(x^2+5)^{-3}$$

 $\frac{du}{dt} = -3(x^2+5)^{-4}$

$$\frac{dy}{dx} = -3(x^2+5)^{-2}x$$

$$= -6x \qquad \text{fn}$$

$$ii$$
) $y = 3c^2 tand$

$$\frac{dy}{dx} = x^2 \sec^2 x + \tan x \cdot 2x.$$

$$= \frac{xL^2}{\cos^2 x} + \frac{2x \sin x}{\cos x}$$
$$= \frac{x}{\cos x} \left(\frac{x}{\cos x} + \frac{2 \sin x}{\cos x} \right)$$

$$\hat{y} y = \frac{\log_e x}{x}$$

$$\frac{dy}{dx} = \frac{x \cdot \frac{1}{x} - hx \cdot l}{x^2}$$

$$= \frac{1 - \ln x}{x^2} \left(2\right)$$

$$(b) \int \frac{x^2}{x^3 - 2} dx$$

$$= \frac{1}{3} \int \frac{3x^2}{x^3 - 2} dx$$

$$= \frac{1}{3} \ln(x^3 - 2) + C$$

$$= \left[\frac{1}{2} \sin 2x\right]_{0}^{\frac{\pi}{4}}$$

$$= \frac{1}{2} \sin \frac{\pi}{2} - \frac{1}{2} \sin 0$$

$$=\frac{1}{2}\sin\frac{\pi}{2}-\frac{1}{2}\sin\alpha$$

$$= \int e^{x} \int_{0}^{\ln 3}$$

$$(i) \frac{y-7}{x-4} = \frac{2^{-1}}{1-4}$$

B(4,1) i) $AB = \sqrt{5^2 + 3}$

$$\frac{y-4}{4-1} = \frac{-5}{-3}$$

$$-3y + 21 = -5x + 2$$

 $5x - 3y + 1 = 0$

$$d = \frac{|ax, +by, +c|}{\sqrt{a^2 + b^2}} = \frac{|5.3 - 3.8 + 1|}{\sqrt{25 + 9}}$$

$$= \frac{|-8|}{\sqrt{34}} = \frac{8\sqrt{34} - 9}{34}$$

$$iv) A = \frac{1}{2} \times \sqrt{34} \times 4\sqrt{34} = 4 v^{2}$$

a)
$$5x^2 - 2x - 3 = 0$$

b)

y = 2x

i) 4x+3y-40=0 (2)

4x+6x-40=0

x=4 y=8

10x-40=0

10x = 40

A (4,8)

$$ii) \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$$

$$= -\frac{2}{3}$$

$$y = 0$$
 $4x = 40$ $x = 10$
 $B(10, 0)$
 $AB m = \frac{8}{-6} = -\frac{4}{3}$

ii) 4x-3y-40=0

$$B m = \overline{\zeta} = \overline{3}$$

$$\tan \theta = -\frac{4}{3}$$

$$\theta = 127^{\circ} \text{ (with + director)}$$

$$y < 2x$$
 $4x + 3y - 40 = 0$

$$cij50^{\circ} = \frac{5\pi}{18}$$

$$|ii\rangle A = \frac{1}{2}r^2(\theta - \sin\theta)$$

$$= 1.100 (5\pi - \sin\theta)$$

$$=\frac{1}{2}.100.\left(\frac{5\pi}{18}-\sin\frac{5\pi}{1}\right)$$

$$=5.3 \text{ cm}^2$$
. (2)

QUESTION 4.

(a)
$$\frac{\log x^3 - \log x}{\log x^2 + \log x} = \frac{3\log x - \log x}{2\log x + \log x}$$
$$= \frac{2\log x}{3\log x}$$
$$= \frac{2}{3}$$

Aw. 2

(b)

(i)
$$\cos B = \frac{AB^2 + BC^2 - AC^2}{2(AB)(BC)}$$
$$= \frac{8^2 + 8^2 - (8\sqrt{3})^2}{2 \times 8 \times 8}$$
$$= \frac{64 + 64 - 192}{128}$$
$$= -\frac{1}{2}$$

(ii) Surface area =
$$6 \times \text{area}(ABCD)$$

= $6 \times \left(2 \times \frac{1}{2}(AB)(BC) \sin 120^{\circ}\right)$
= $6 \times (8 \times 8 \times \sin 120^{\circ})$
= $6 \times 8 \times 8 \times \frac{\sqrt{3}}{2}$
= $192\sqrt{3} \text{ cm}^2$ Aw. 3
or $333 \text{ cm}^2 (3 \text{ sig. fig.})$

) Alternate Solution:

Triangle ABD is equilateral $\therefore BD = 8 \text{ cms}$

$$\therefore \text{ surface area} = 6 \times \left(\frac{1}{2} \times AC \times BD\right)$$
$$= 6 \times \left(\frac{1}{2} \times 8\sqrt{3} \times 8\right)$$
$$= 192\sqrt{3} \text{ cm}^2$$

c)
$$y = 1 + \sin 2x$$

(i) Period =
$$\frac{2\pi}{2}$$
 $\frac{3\xi}{2}$
= π units

Range: $0 \le y \le 2$

Aw 2

(iii) For the graph $y = 1 + \sin 2x$ in part (ii) there are two x intercepts for $0 \le x \le 2\pi$.

When
$$y = 0$$
: $\sin 2x + 1 = 0$

 $\therefore \sin 2x = -1$ has two solutions. Aw. I

QUESTION 5.

(a)
$$\sec \frac{\pi}{4} + \cot \frac{\pi}{6} = \frac{1}{\cos \frac{\pi}{4}} + \frac{1}{\tan \frac{\pi}{6}}$$

$$= \frac{1}{\frac{1}{\sqrt{2}}} + \frac{1}{\frac{1}{\sqrt{3}}}$$

$$= \frac{7}{2} + \frac{7}{3}$$

(b) (i)

Number of 2-digit numbers = 12.

$$P(21 \text{ is formed}) = \frac{1}{12}$$

P(number is divisible by 3) = $\frac{4}{12}$

$$=\frac{1}{3}$$
 Aw. 1

Aw I

Aw 3

Aw. I

(c) (i)
$$d = T_2 - T_1$$

= 41 - 47

$$T_n < 0$$

$$a + (n-1)d < 0$$

$$47 + (n-1)(-6) < 0$$

$$47 - 6n + 6 < 0$$

 $n > 8^{\frac{5}{2}}$... smallest n is 9

$$\frac{n}{2}[2a + (n-1)d] < 0$$

$$\frac{n}{2}[94 - 6(n-1)] < 0$$

$$n(100 - 6n) < 0$$

$$n < 0$$
 No solution

$$1 < 0$$
 No solution > $\frac{100}{4}$

∴ smallest n is 17.

QUESTION &

(a)
$$V = 375e^{0.05t}$$

(i)
$$V = 375 \times e^{0.05 \times 10}$$

= 618.27

... value is \$618 (to the nearest dollar). Aw. 1

(ii)
$$1000 = 375e^{0.05t}$$

 $\frac{1000}{375} = e^{0.05t}$
 $\ln\left(\frac{1000}{1000}\right) = 0.05t$

t = 19.6 years, correct to 1 dec. place Aw. 2

(b)
$$y = e^{2x}(1-x)$$

(i) To find y-intercept, let x = 0

$$y = e^{2 \times 0} (1 - 0)$$

 $= 1 \times 1$

= 1 .. y intercept is 1.

(ii) To find where curve crosses x-axis, let
$$y = 0$$

$$e^{2}(1-x)=0$$

Now $e^{2x} > 0$ for all s

$$\therefore 1 - x = 0$$

r = 1

 $(iii) \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

$$\frac{dy}{dx} = e^{2x} \times (-1) + (1-x) \times 2e^{2x}$$
$$= -e^{2x} + 2e^{2x} - 2xe^{2x}$$

$$= e^{2x} - 2xe^{2x}$$

$$= e^{2x}(1-2x)$$

To find stationary point, let $\frac{dv}{dz} = 0$.

$$e^{2x}(1-2x) = 0$$

 $1-2x = 0$ (N.B. $e^{2x} \neq 0$)
 $x = \frac{1}{2}$

When
$$x = \frac{1}{2}$$
, $y = \frac{c}{2}$

 \therefore stationary point is $(\frac{1}{2}, \frac{e}{3})$.

Now at
$$x = 0$$
, $\frac{dy}{dx} = e^{0} \times (1 - 0)$
= 1

and at
$$x = 1$$
, $\frac{dy}{dx} = e^2(1 - 2 \times 1)$

$$\therefore \left(\frac{1}{2}, \frac{\epsilon}{2}\right) \text{ is a maximum turning point } (/).$$

(iv)
$$y = e^{2x}(1-x)$$

As $x \to \infty$, $e^{2x} \to \infty$ and 1-x < 0.

$$\therefore e^{2x}(1-x) \to \longrightarrow Aw$$
Then in the sum of the second seco

That is, the curve approaches ----.

(v) As
$$x \to -\infty$$
, $e^{2x} \to 0$ and $1-x > 0$.
 $\therefore e^{2x}(1-x) \to 0$. Aw. 1

That is, the curve approaches the x-axis.

QUESTION 7.

- (a) (i) Particle changes direction at t = 1 and t = 5 seconds.
 - (ii) Particle has positive acceleration for
 - (iii) Simpson's Rule:

Distance =
$$\frac{b-a}{6} \left(f(a) + 4 \int \left(\frac{a+b}{2} \right) + f(b) \right)$$

= $\frac{5-1}{6} (0 + 4 \times 12 + 0)$
= $\frac{4}{6} \times 43$
= 32 m Aw. 2

(iv) Distance travelled in first second

$$= \left| \int_{0}^{1} (-3t^{2} + 18t - 15) dt \right|$$

$$= \left| \left[-t^{3} + 9t^{2} - 15t \right]_{0}^{1} \right|$$

$$= \left| \left(-1 + 9 - 15 \right) - 0 \right|$$

$$= 7 \text{ m}$$

Distance travelled between t = 1 and t = 5 is 32 m from (i). [Note: Simpson's rule gives exact area under parabolic curves

Distance travelled between t = 5 and t = 6is 7 m (by symmetry) : total distance = 7 + 32 + 7

Aw 1

Alternate Solution

Distance

$$= \left| \int_0^1 (-3t^2 + 18t - 15) dt \right| + \int_1^5 (-3t^2 + 18t - 15) dt$$

$$+ \left| \int_5^6 (-3t^2 + 18t - 15) dt \right|$$

$$= \left| \left[-t^3 + 9t^2 - 15t \right]_0^1 \right| + \left[-t^3 + 9t^2 - 15t \right]_1^5$$

$$+ \left| \left[-t^3 + 9t^2 - 15t \right]_5^6 \right|$$

$$= \left| (-1 + 9 - 15) - 0 \right|$$

$$+ \left[(-125 + 225 - 75) - (-1 + 9 - 15) \right]$$

$$+ \left| (-216 + 324 - 90) - (-125 + 225 - 75) \right|$$

$$= 7 + 32 + 7$$

$$= 46 \text{ m}$$

(b) Volume =
$$\pi \int_{c}^{b} y^{2} dx$$

= $\pi \int_{2}^{3} \left(\frac{1}{2x+3}\right)^{2} dx$ Aw. 1
= $\pi \int_{2}^{3} (2x-3)^{-2} dx$
= $\pi \left[-\frac{1}{2}(2x-3)^{-1}\right]_{2}^{3}$ Aw. 1
= $\pi \left[\frac{-1}{2(2x-3)}\right]_{2}^{3}$
= $\pi \left[\frac{-1}{2(6-3)} - \frac{-1}{2(4-3)}\right]$ Aw. 1
= $\pi \left[-\frac{1}{6} + \frac{1}{2}\right]$
= $\frac{\pi}{3}$ cubic units Aw. 1

QUESTION 8.

(a) (i) Table of differences.

		Die 1					
		}	2	3	4	5	6
	1	0	1	2	3	4	5
	2	1	0	ì	2	3	4
Die 2	3	2	l	0	1	2	3
	4	3	2	1	0	1	2
	5	4	3	2	l	0	ı
	6	5	4	3	2	1	0

P(difference of 4) =
$$\frac{4}{36}$$

= $\frac{1}{9}$ Aw. 2

(ii) P(both give difference of 4) =
$$\frac{1}{9} \times \frac{1}{9}$$

= $\frac{1}{81}$ Aw. 1

(b) (i)
$$mx^2 - 6x - 1$$

Discriminant = Δ
= $b^2 - 4ac$
= $(-6)^2 - 4 \times m \times (-1)$
= $36 + 4m$ Aw. 1

(ii) For expression to be positive definite, we require m > 0 and $\Delta < 0$. Aw. 1

$$\Delta = 36 + 4m < 0$$

$$4m < -36$$

$$m < -9$$

$$\therefore \text{ if } \Delta < 0 \text{ then } m < 0$$

(c) (i)
$$y = 20x - 4x^2$$

$$\frac{dy}{dx} = 20 - 8x$$

At
$$x = 2$$
, $\frac{dy}{dx} = 20 - 8 \times 2$

= 4

Equation of tangent given by

$$y - y_1 = m(x - x_1)$$

$$y - 24 = 4(x - 2)$$

$$y - 24' = 4x - 8$$

$$4x - y + 16 = 0$$

Aw. 1

QUESTION 9.

(a) (i) Geometric series is $\frac{a+b}{a-b} + m + \frac{a-b}{a+b}$.

$$\frac{m}{\frac{a+b}{a-b}} = \frac{\frac{a-b}{a+b}}{m}$$

$$\therefore m^2 = \frac{a+b}{a-b} \times \frac{a-b}{a+b}$$

$$= 1$$

$$\therefore m = \pm 1$$
Aw. 2

(b)

(c) ·

A ... 1

(i) Aim: to prove $\angle DCE = \angle DEC$ ABCD-is a square (given)

$$\therefore \angle DCA = \angle ACB$$
= 45° (Diagonal AC bisects \angle DCB)

$$\sim \angle ACE = 22\frac{1}{2}$$
° (Given CE bisects $\angle ACB$)

$$\therefore \angle DCE = 77\frac{1}{2}^{\frac{1}{6}} (\angle DCA + \angle ACE)$$

 $\angle DEC = \angle DBC + \angle BCE$ (in any triangle, exterior angle = sum of interior opposites) = $45^{\circ} + 22\frac{1}{2}^{\circ}$ (same reason as above) = $77\frac{1}{2}^{\circ}$

Aw. 3

 $\sim \angle DCE = \angle DEC$

(i) From diagram

$$r^2 + (2x)^2 = 20^2$$

 $r^2 + 4x^2 = 20^2$
 $r^2 = 20^2 - 4x^2$ Aw. 1

∴ volume of silo:
$$V = \pi r^2 x + \frac{1}{3} \pi r^2 (2x)$$

$$= \frac{5}{3} \pi r^2 x$$

$$= \frac{5}{3} \pi x (400 - 4x^2)$$

$$= \frac{20}{3} \pi (100x - x^3)$$

(iii)
$$\frac{dV}{dx} = \frac{20}{3}\pi(100 - 3x^2)$$
$$\frac{d^2V}{dx^2} = \frac{20}{3}\pi(-6x)$$
$$= -40\pi x$$

To find stationary point, let $\frac{dV}{dx} = 0$

$$\frac{20\pi}{3}(100 - 3x^2) = 0$$

$$3x^2 = 100$$

$$x^2 = \frac{100}{3}$$

$$\therefore x = \frac{10}{\sqrt{3}} (x > 0)$$

$$\frac{d^2V}{dx^2} < 0 \text{ for } x = +\frac{10}{\sqrt{3}}$$

 \therefore maximum volume occurs where $x = \frac{10}{\sqrt{3}}$

$$\therefore \text{ required height} = 3 \times \frac{10}{\sqrt{3}}$$
$$= 10\sqrt{3} \text{ metres}$$

QUESTION 10.

(a)
$$92n-7 = 272n-5$$

 $(3^2)2n-7 = (3^3)2n-5$
 $3^4n-14 = 36n-15$
 $\therefore 4n-14 = 6n-15$
 $1 = 2n$
 $n = \frac{1}{2}$ Aw. 2

(b) (i)
$$A = P\left(1 + \frac{r}{100}\right)^n$$

$$= 2000\left(1 + \frac{4}{100}\right)^{40}$$

$$= 2000(1.04)^{40}$$

$$= $9602.04$$
Aw. 1

(ii) Amount =
$$500 \times 1.04^{38} + 500 \times 1.04^{36} + 500 \times 1.04^{34} + ... + 500 \times 1.04^{2}$$

$$S_x = \frac{a(r^x - 1)}{r - 1}$$

$$\therefore \text{amount} = \frac{500 \times 1.04^2((1.04^2)^{19} - 1)}{(1.04)^2 - 1} \text{ Aw. 1}$$

$$f''(0.4) = \pi^2 \cos(0.4\pi)$$

= 3.049...
> 0
 $f''(0.6) = \pi^2 \cos(0.6\pi)$
= -3.049...
< 0
 $\therefore (\frac{1}{2}, \frac{\pi}{2})$ is a point of inflection on $y = f(x)$.

(2, 2) 2 point of many

(c)
$$f(x) = \pi x - \cos(\pi x)$$

$$f'(x) = \pi + \pi \sin(\pi x)$$

$$f''(x) = \pi^{2} \cos(\pi x)$$

$$f''\left(\frac{1}{2}\right) = \pi^{2} \cos\left(\frac{\pi}{2}\right)$$

$$= 0$$
Aw. 1

(ii)
$$f\left(\frac{1}{2}\right) = \frac{\pi}{2} - \cos\frac{\pi}{2}$$

$$= \frac{\pi}{2} - 0$$

$$= \frac{\pi}{2}$$

$$\therefore \left(\frac{1}{2}, \frac{\pi}{2}\right) \text{ lies on } y = f(x). \qquad \text{Aw.}$$
From (i),
$$f''\left(\frac{1}{2}\right) = 0$$

If δ is some small positive value

$$f''\left(\frac{1}{2} - \delta\right) = \pi^2 \cos\left[\pi\left(\frac{1}{2} - \delta\right)\right]$$
$$= \pi^2 \cos\left(\frac{\pi}{2} - \pi\delta\right)$$
$$> 0 \quad \left(\frac{\pi}{2} - \pi\delta \text{ is in 1st quadrant}\right)$$

$$f''\left(\frac{1}{2} + \delta\right) = \pi^2 \cos\left[\pi\left(\frac{1}{2} + \delta\right)\right]$$
$$= \pi^2 \cos\left(\frac{\pi}{2} + \pi\delta\right)$$
$$< 0 \quad \left(\frac{\pi}{2} + \pi\delta \text{ is in 2nd quadrant}\right)$$

 \therefore concavity changes about $x = \frac{1}{2}$. Aw. 1

$$\therefore \left(\frac{1}{2}, \frac{\pi}{2}\right) \text{ is a point of inflection on } y = f(x).$$

To find Q, let
$$y = 0$$
 in equation of tangent.
 $4x - 0 + 16 = 0$

 \therefore coordinates of Q are (-4.0) Aw. 1

(iii) Area of triangle =
$$\frac{1}{2} \times 6$$

= 72 squ. ts

Area under curve
$$= \int_0^2 (20x - 4x^2) dx$$
$$= \left[10x^2 - \frac{4}{3}x^3\right]_0^2$$
$$= \left(40 - \frac{32}{3}\right) - 0$$
$$= 29\frac{1}{3} \text{ square units}$$

∴ area of region
$$POQ = 72 - 29\frac{1}{3}$$

= $42\frac{2}{3}$ square units